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ABSTRACT

A review of the rigorous coupled-wave analysis as applied to the diffraction of electro-
magnetic waves by gratings is presented. The analysis is valid for any polarization, angle of
incidence, and conical diffraction. Cascaded and/or multiplexed gratings as well as material
anisotropy can be incorporated under the same formalism. Small period rectangular groove
gratings can also be modeled using approximately equivalent uniaxial homogeneous layers
(effective media). The ordinary and extraordinary refractive indices of these layers depend
on the grating filling factor, the refractive indices of the substrate and superstrate, and
the ratio of the freespace wavelength to grating period. Comparisons of the homogeneous
effective medium approximations with the rigorous coupled-wave analysis are presented.
Antireflection designs (single-layer or multilayer) using the effective medium models are
presented and compared. These ultra-short period antireflection gratings can also be used
to produce soft x-rays. Comparisons of the rigorous coupled-wave analysis with experimen-
tal results on soft x-ray generation by gratings are also included.

I. INTRODUCTION ‘

The diffraction of electromagnetic waves by periodic structures continues to be of great
practical importance owing to numerous applications in a variety of fields such as acousto-
optics, integrated optics, spectroscopy, optical interconnects, binary optics, and quantum
electronics. Furthermore, high spatial-frequency (small period compared to wavelength)
surface-relief binary or multilevel stairstep diffraction gratings on dielectric or lossy sub-
strates can behave as homogeneous uniaxial layer(s) for either polarization and angle of in-
cidence. As a result these gratings can be used in applications such as in high-power lasers,
antireflection surfaces, filters similar to thin-film coatings, wave plates, and polarization-

selective mirrors.

In this paper a brief review of the rigorous coupled-wave analysis is presented along
with the effective medium approximations for high spatial-frequency gratings. The analysis

Conf. on Binary Optics, 1993

61



e R RN R T

]

Coaa W

i

uwonou

BUlMIL A Wl

is valid for any incident polarization and angle of incidence. The orientation of the plane of
incidence can also be arbitrary (conical diffraction). The electric and magnetic fields in the

grating region can be expanded in terms of spatial harmonics which must satisfy Maxwell’s

equations. The resulting set of first-order coupled differential equations can be solved
simultaneously with the boundary conditions of the problem leading to the determination
of all quantities of interest (diffracted fields, efficiencies). The review of the rigorous coupled-
wave analysis is presented in sec. II.

In the small period limit, all diffracted orders except the zeroth orders are cutoff and
the grating behaves like a slab of homogeneous uniaxial material (effective medium) with
its optic axis parallel to the grating vector. The ordinary and the principal extraordinary
indices of the slab depend on the grating filling factor (duty cycle), the refractive indices
of the substrate and the surrounding medium, and the ratio of the freespace wavelength to
period. These refractive indices can be determined by solving two transcendental equations
(higher-order refractive mdlces) Approximate solutions of the transcendental equations
define the second-order indices (second-order dependence on wavelength-to-period ratio),
and first-order indices (no dependence on the wavelength-to-period ratio). The diffrac-
tion efficiencies using the effective medium models are compared with those obtained by
the rigorous coupled -wave analysis for various diffraction geometries. The wavelength-to-
period ratio necessary for the validity of each model is determined. The effective medium
approximations are presented in sec. ITI.

Antireflection behav1or can be obtamed by appropnate combinations of the filling factor
and the groove depth of the grating. De51gn procedures are presented using the higher-
order, the second-order, and the first-order grating refractive indices and are compared.
Multilevel stairstep gratrings are also designed to perform like broadband antireflection filters
(Butterwoth or Chebyshev). The design of antireflection gratings is described in sec. IV.

Finally, small period gratings can be used in conjunction with intense femntosecond
laser pulses to produce sub-picosecond soft x-rays through the creation of a plasma grating.
Antlreﬁectlon grating design is needed to minimize the reflectance of these grating targets.
The rigorous coupled-wave analysis was applied to analyze photolithographically produced
SiO, Si, and SiN gratings with subwavelength periods. These results are presented in sec. V.

LED-WAVE ANALYSIS

II. RIGOROUS CO

Methods of grating diffraction analysis can be divided into two major categories, the
integral methods,! and the differential methods.! =7 The most common and accurate differ-
ential methods are coupled-wave approaches?~° and modal approaches.®’

The general geometry of a grating structure along with an incident plane wave is
shown in Fig. 1. This figure corresponds to a surface-relief type grating but it applies
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to volume gratings too. The grating and the surrounding regions can be general aniso-
tropic. The configuration in Fig. 1 corresponds to any general three-dimensional inci-
dence and any allowable linear polarization. The electric and magnetlc fields in the grat-
mg region(s) are expanded in terms of spatial harmonics E = Y, S;(z) exp(— JO’, F') and
H= (eo/y0)1/2 > U, (2) exp(— ]0, r), where &; = Kine — 1K (1 = 0,£1,%2,---), S, U are
the space harmonic amplitudes, k;,. is the incident wavevector (in the grating region), K
is the grating vector, and €, po are the permittivity and permeablhty of freespace, and w
is the angular frequency of the incident wave. The field expansions must satisfy Maxwell’s
curl equations in the grating region(s):
VxE=-jwB= jwpoﬁ(z,z)ﬁ, (1)
V x B = J+ jwD = [jweoé(z, 2) + 5(z, 2)]E,

where &, Ji, and & are the relative permittivity, relative permeability, and conductivity
tensors of the grating regions and are periodic in the direction of the gratmg vector. More
general equatlons can be written if constitutive relations of the form D=¢E+ gH and
B=hE+pH (for blamsotroplc media) are used where § and h are the coupling tensors
between D and H, and B and E. However, the most common and practical case in optics
is when only the permittivity tensor is modulated. Using the spatial expansions of the
fields into Eq. (1) an infinite set of linear coupled-wave differential equations is derived. If
the infinite number of possible diffracted orders is truncated to a finite number m then the
total number of coupled-wave equations becomes 6m. Eliminating the components along the
propagation direction (z in Fig. 1), the tangential components of the electric and magnetic

fields can be expressed in the following compact matrix form®~®

dV Jdz = jAV, (2)

where V is a 4m x 1 vector containing the tangential space harmonic components of the
electric and magnetic fields and A is a 4m x 4m coupling matrix.3~® All special cases can be
derived from the above general expression. For example if angle a = 0° (Fig. 1) and ¢ = 90°,
only the y-components of the electric field and the z-components of the magnetic field exist
(TE polarization) and Eq. (2) reduces to a system of 2m equations. Similarly, Eq. (2)
reduces to 2m equations in the case of & = 0° and ¢ = 0° (TM polarization). The above
conclusions in these limiting cases are valid if isotropic or special orientation (with respect
to the principal axes) anisotropic grating region(s) are considered. In general, for three-
dimensional incidence (conical diffraction) the two orthogonal polarizations are coupled even
in the 1sotrop1c case. Independently of the grating characteristics Eq. (2) can be solved in
the form V = Wexp(Az)C where W and A contain the eigenvectors and eigenvalues of
the coupling matrix A and C contains 4m unknown constants.?~* Combining the previous
field solutions with the known plane wave solutions in the regions external to the grating, a
set of boundary conditions is formed. Solution of this set of conditions (a linear system of
the form Az = b) specifies all the unknown field coefficients.>~® Knowledge of the electric
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and magnetic fields in any region of the problem determines all quantities of interest, such
as the diffraction efficiencies. The same approach is valid for any type of volume or surface-
relief grating of constant or varying modulation since they can represented as cascaded
gratings.® The same formulation can be applied to multiplexed gratings.® The effective
medium approximations for a high spatial-frequency surface-relief grating are presented in
the next section.

1. HOMOGENEOUS EFFECTIVE MEDIUM APPROXIMATIONS

A high spatial-frequency surface-relief grating is characterized by a period A which
is much smaller than the incident freespace wavelength A¢. In this case all the diffracted
orders except the zero forward-diffracted and the zero backward-diffracted orders are cutoff.
This ;srshown schematlcally in Fig. 2afor a rectangular-groove grating in the case of conical
diffraction geometry. A cross section of the grating is shown in Fig. 2b. The superstrate
and substrate refractive indices are n; and n3 respectively, while the filling factor of the
grating is F. The grating vector is K = 2#(2r/A) where % is the unit vector along the z
direction.

3

In the case that Aq > A it can be shown®® that at normal incidence for TE polarization
(electric field polarized perpendicular to the grating vector, E1EK ) there is an effective
refractive index no defined, which is given by :

ne = [n3(1— F) 4+ n2F)'/2, (3)

For the orthogonal polarization (TM polarization or magnetic field perpendicular to the
grating vector, H 1 K ), the corresponding effective refractive index ng is given by

I—F E}—1/2

+

2 2
nj n3

(4)

In the general case of obhque incidence the h1gh spatlal-frequency grating is equlvalent10 11

ng = |

to a uniaxial homogeneous slab with its optic - axis oriented along the direction of the grating
vector (z direction in this case), and ordinary and extraordinary refractive indices given by
Egs. (3) and (4) respectively or by the higher-order indices defined next. The thickness of
the slab is e(;{uari:to the groove depth d of the grating. The effective indices given by Egs. (3)
and (4) are the first-order indices and they are denoted by (n(ol),ng)) in contrast to the

second- and higher-order effective indices which are presented next.

Higher-order approximations of the effective ordinary and extraordinary indices have
been found by Rytov.!? These indices are given by the solutions of the following transcen-
dental equations: - o BEREE

A :
\/n? — n? tan [—n(1 - F) nf—n%]=—-\/n§—n?)tan[wa\/ng—nzo],
_ PR A
nE [——7r 1-F) nf—n%]=—¥tan[ nFy/nd - nZ].
ns; Ao

(5)
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The effective refractive indices which are solutions of the above equations are denoted as
higher-order effective indices (n(OH) , ng{)). Approximate solutions of Egs. (5) with second-
order dependence on the grating period to wavelength ratio, are characterized as second-
ve ind; (2) ,(2) o
order effective indices (n;’,ny ') and are given by
1, A 1/2
2 1
ng = [(ng") + 3l F(1 = F)(nd = n])’] 7,
(2) (12 1, A 2L Az ()yer (1))211/2 (©)
g :[("E)'*'*["'—F(I_F)] (_5‘_2) ("E)("o)] .
3" Ao ng nj
The higher- and second-order effective indices converge to the first-order incides when
(A/XAo) — 0. The modeling of a high spatial-frequency surface-relief grating through a
uniaxial homogeneous layer using the first-, second-, or higher-order effective indices con-

stitutes the effective medium models that can approximate the grating behavior.

The dependence of the three different effective indices [Egs. (3),(4), (5), and (8)] on
the filling factor of the grating is shown in Fig. 3a for Ao/A = 5 and for a silicon grating
at A = 1.5 um in air (n; = 1, ns = 3.5). The dependence of the effective indices on As/A
is shown in Fig. 3b for F = 0.5. It is apparent that the three effective indices pairs differ
substantially, especially for small Ao /A ratios. For large ratios (Ao/A > 15) the higher- and
the second-order indices are essentially the same as the first-order effective indices.

The same uniaxial homogeneous slab model with ordinary and extraordinary indices
given by the first-, second-, or higher-order effective indices can also be used in the more
general case of the conical diffraction as long as all diffracted orders except the zero forward-
diffracted (transmitted) order and the zero backward-diffracted (reflected) order are cutoff.
To demonstrate the validity of the models for the conical diffraction case, a silicon grating
of F = 0.22 and d = 0.134), is used at Ay = 1.5um for a polar and azimuthal angles of
incidence (Fig. 2) # = ¢ = 45 deg and TE polarization. The zero-order backward-diffracted
efficiency is shown in Fig. 4 using each of the three approximate models (using the first-,
second- and higher-order effective indices) and using the rigorous conpled-wave analysis. It
is observed that the second- and the higher-order models agree very well with the exact
solution obtained with the rigorous coupled-wave analysis even for small Ao /A ratios (=~ 2).
Consequently, these effective medium models can be used for the design of surface-relief
gratings even with larger periods compared to the incident freespace wavelength. These
models will be exploited next in order to design antireflection gratings on silicon substrates.

IV. ANTIREFLECTION GRATING DESIGNS

As was shown previously, high spatial-frequency gratings can be well approximated
by homogeneous uniaxial layers with effective ordinary and extraordinary refractive indices
which depend on the grating parameters, the incident wavelength and the refractive indices
of the surrounding media. Thus, results from the thin layer designs can be used for the de-
sign of antireflection gratings. Antireflection grating designs on dielectrics, semiconductors
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or metals, similar to thin film antireflection coatings designs, are well documented in the
8,9,13—16

literature.
The antireflection grating design procedure is analogous to the microwave wave-
impedance matching technique. For a single layer antireflection coating (equivalent to a
single-level rectangular groove grating) its thickness and refractive index are given by
a=22p, N = VN s, 7
2 ;
where p =1,3,5,---, and Ny, N;, N; are the effective indices that correspond to the wave
impedance in the superstrate the effective uniaxial Iayer and the substrate. The N, is
a function of the first-order, second-order, or higher-order refractive indices of the homo-
geneous uniaxial layer. Equations (7) can be solved either analytically (in the case that
first-order effective indices are used) or numerically (in the case that second- or higher-
order refractive indices are used) with respect to F and d. The solutions using the second-
or the higher-order effective indices depend on the Ao /A ratio. These designs can be greatly
improved over the first-order designs which do not depend on Ao /A ratio. Example antire-
flection de51gns of single-level rectangular-groove gratings are shown in Figs. 5. Specifically,
the filling factor and the groove depth needed to suppress completely (according to the
homogeneous layer approximation) the specular reflection are shown in Figs. 5a-b, and
5c as a function of the polar angle of incidence # for four distinct cases of incident light
of A; = 1.5um on silicon targets in air (¢ = 0 or 90 deg and for TE or TM incident
polarization). .

The same principles can be generalized to design broadband antireflection gratings sim-
ilar to broadband antireflection thin film coatings'®. These designs resemble the microwave
Butterworth or Chebyshev transformers. The resulting grating is a multilevel stairstep
grating as shown in Fig. 6. The detailed procedure is summarized in Ref. 16. An example
design on silicon at Ay = 1.5 um is shown in Table I for a two- and a three-level maximally-
flat (Butterworth) and equal-ripple (Chebyshev) filters using the first-order effective indices
at normal incidence. The resulting reflectivity of these gratings is shown in Figs. 7a and 7b
where the broadband antireflection response is apparent.

Antireflection grating designs can be obtained even for gratings with small X, /A ratic.
In these cases the approximate effective medium models will not approximate the grating
accurately. However, the designs obtained by the effective medium models can again be of
significant value since they can serve as starting designs which can be improved by using
the rigorous coupled-wave analysis and a simulated annealing type of algorithm.

V. ANTIREFLECTION GRATINGS FOR X-RAY EMISSION

Laser produced plasmas created by intense femtosecond laser pulses have been demon-
strated to produce subpicosecond soft-x-rays.'”'® The use of terawatt femtosecond lasers
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permits the generation of more intense x-ray sources. However, increased target reflectivity
at high fluence results in less efficient coupling. Grating targets can dramatically increase
this coupling.® The rigorous coupled-wave analysis was applied to analyze photolithographi-
cally produced SiO, Si, and SiN diffraction surface-relief gratings with varying groove depths
and filling factors and with periods of 240 or 300 nm. Good agreement between the ex-
perimental data and the calculated rigorous coupled-wave results was obtained (Figs. 8a
and 8b). The plasma gratings are inhomogeneous due to the varying plasma temperature.
However, the rigorous coupled-wave analysis can be applied since the plasma grating can be
decomposed into a series of cascade homogeneous gratings. Specially designed antireflection
gratings could potentially increase absorption resulting in an enhanced energy deposition,
a hotter plasma, and consequently more intense x-ray emission.

VI. SUMMARY

A review of the rigorous coupled-wave analysis of grating diffraction was presented.
The analysis is valid for both volume or surface-relief gratings and can incorporate lossy or
anisotropic materials. The same formalism is also applicable to cascaded and/or multiplexed
gratings. In addition, a review of the effective medium approximations as applied to small
period surface-relief gratings was also presented. It was shown that high spatial-frequency
gratings can be modeled as uniaxial homogeneous layers with their optic axis parallel to
the grating vector. The ordinary and extraordinary indices of the layers depend on the
grating parameters and the ratio of the grating period to the freespace wavelength. Three
effective medium models were defined using first-, second-, and higher-order indices. It
was demonstrated that the effective medium models are also valid in the case of conical
diffraction. Applications of the first-order model to single-level and multilevel antireflection
gratings were presented. Experimental comparisons of the rigorous coupled-wave analysis
results on soft x-ray generating gratings were also included.

VII. REFERENCES
[1] R. Petit, Ed., Electromagnetic Theory of Gratings, Springer-Verlag, 62 (1980).
[2] H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[3] M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. T1, 811 (1981).
[4] T. K. Gaylord and M. G. Moharam, Proc. IEEE 73, 894 (1985).
[5] E. N. Glytsis and T. K. Gaylord, J. Opt. Soc. Am. A 7, 1399 (1990).
[6] T. Tamir, H. C. Wang, and A. A. Oliner, IEEE Trans. Microwave Theory Tech. MTT-
12, 323 (1964).
[7] R. S. Chu and J. A. Kong, IEEE Trans. Microwave Theory Tech. MTT-25, 18 (1977).
[8] Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, Appl. Opt. 26, 1142 (1987).
[9] T. K. Gaylord, W. E. Baird, and M. G. Moharam, Appl. Opt. 25, 4562 (1986).
[10] R. C. McPhedran, L. C. Botten, M. S. Craig, M. Neviere, and D. Maystre, Opt. Acta

67



T TR YT T TE I T R

T

VATTE e b o Dl i oA il AN MO BN T 1§

ULl

dldd

I

[ [EETR AN

29, 289 (1982).

[11] G. Bouchitte and R. Petit, Electromag. 5, 17 (1985).

[12] S. M. Rytov, Soviet Phys. JETP-2, 466 (1956).

(13] T. K. Gaylord, E. N. Glytsis, and M. G. Moharam, Appl. Opt. 26, 3123 (1987).

[14) E. N. Glytsis and T. K. Gaylord, Appl. Opt. 27, 4288 (1988).

[15] T. K. Gaylord, E. N. Glytsis, M. G. Moharam, and W. E. Baird, U. S. Patent No.
5,007,708 (1991). 7

[16] E. N. Glytsis and T. K. Gaylord, Appl. Opt. 31, 4459 (1992).

[17) M. Murnane, H. Kapteyn, J. Bokor, W. Mansfield, R. Gnall, E. N. Glytsis, T. K. Gay-
lord, and R. Falcone, OSA Topical Meeting on Short Wavelength Coherent Radiation,
Monterey, CA, April 1991. .

[18] M. Murnane, H. Kapteyn, J. Bokor, W. Mansfield, E. N. Glytsis, and R. Falcone, Appl.

Phys. Lett., 1993 (accepted).

I T e (A owm



REGION 3
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Fig. 1: The three-dimensional geometry of the grating structure and the incident plane wave. The
angle of incidence is v (in the plane of incidence). The angles a and § are used to specify the
incident wavevector in the zyz coordinates system. The angle ¢ specifies the angular orientation of
the incident polarization. An angle a = Odeg and v = 90deg corresponds to TE polarization while
an angle a« = Odeg and ¥ = Odeg corresponds to TM polarization.
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Fig. 8: (a) Dependence of the first-, second- and higher-order effective refractive indices (ordinary
and extraordinary) on the filling factor of a rectangular groove grating for Ao /A = 3. (b) Dependence
of the first-, second- and higher-order effective refractive indices (ordinary and extraordinary) on

the Ao/A of a rectangular groove grating with F = 0.5.

71



R

sy

R R

[T

W L in

[ 11

AR Si Grating
+ (designed for ¢=0, 6,=0", E LK)

& 501 g 1 ¢ = 45°

hi 3 61 = 45

s 1

e 40} A

3 / ‘.j’ N First-Order Indices

& ‘” \  .——- Second-Order Indices 7
u a0 L |\l ——- Higher-Order Indices -
2 | Exact (RCWA)
8 |
= ST R i
a 20} :
2 :
:6 H
z
5
s 10}
@

j

o .

6 Oor . B

] ﬁ 1 1 1 I i 1 _ 1

i
0 2 4 6 8 10 12 14
Wavelength to Period Ratio, Ao / A

VI RO WE W Wk O G e NI DN A

Fig. 4: The zero-order backward-diffracted efficiency of a silicon grating for Ao = 1.5um in the -
conical diffraction case (¢ = § = 45deg) as a function of Ao/A. The results using the approximate =
models (with first-, second-, and higher-order indices) as well as the exact results using the rigorous’ z
coupled-wave analysis are shown. B
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Fig. 5: The filling factor F of a rectangular groove surface-relief antireflection grating on silicon
substrate at Ao = 1.5um and at Ao/A = 3.0(?) as a function of the polar angle of incidence 8: (a)
for ¢ = 0 or 90deg and TE incident polarization, and (b) for 4 = 0 or 90deg and TM incident
polarisation. (c) The corresponding normalized groove depths (/Ao) of the antireflection gratings
for the same cases as in (a) and (b). '
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Fig. 8: Cross-sectional view of a multilevel (N-level) stairstep surface relief grating.

Table I: Grating Broadband Antireflection Surfaces on Silicon

Design parameters for grating quarter-wave (broadband antireflection surfaces) transformers for
normal (¢, = 0°) incidence on silicon (n3 = 3.5) at center freespace wavelength Ao = 1.5um. The
filling factors Frg (for TE polarization), Frp (for TM polarization) and the groove depths d,’s,
are summarized for two and three section maximally flat and equal-ripple transformers. Input

region is air (n; = 1.0).

Maximally-Flat Equal-Ripple
Levels Layer

N $ d" (um) FTE FTM d" (um) FTE . 3 FT}\_'{
2 .1 0.2742 0.0774  0.5068 ~ 0.2821  0.0682  0.4727
9T Touaes 04931 0f@e 00612 03023  0.8877

3 1 0.3206 0.0327 0.2928  0.3202  0.0330  0.2951

2 0.2004 0.2222 0.7778 T 702139 0.1842  0.7345

3 0.1253 0.7072  0.9673 0.1429 05229  0.9307
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Fig. T: Reflectivity R (zero-order backward-diffracted efficiency) of a silicon multilevel surface-
relief maximally-flat antireflection grating for 2 or 3 levels as a function of the inverse wavelength
at normal incidence. The solid curves represent the rigorous coupled-wave analysis results while
the dashed lines represent the effective homogeneous layer whith first-order indices results; (a) for
TE polarization and (b) for TM polarisation. (c) and (d) the same results for an equal-ripple
antireflection grating.
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